Why and hav you ought to
Keep multibyte character support simple

EuroBSDCon, Beograd, September 25, 2016

Ingo Schwarze <schwarze@openbsd.org>

- Kan"—mac.kz:,
Country™ \
\ \

Canyon Campground belo_ower Kananaskis Lake Albérta HiéhWay 66 near-
and the Opal Range (2900-3000m) Bragg Creek, Elbe Valley

Ingo Schwarze: Keep multibyte character support simple page 20NTR Beograd, September 25, 2016

Topic of this talk

Multibyte character support in the base system

f Multibyte character support in basic infrastructure
like ksh(1), xterm(1), OpenSSH, man(1), libedit...

f LC_CTYPE support in BSD and POSIX utility programs,
in particular the simplest onesdilis(1), ps(1), cut(1), wc(l)

f POSIX multibyte and wide character functions in the C library
f Multibyte character support in the kernel terminaleif?

Mount Nestor (2975m), the southern pillar of the Goat Range

14:0325 What wont be oveaed? ®

Ingo Schwarze: Keep multibyte character support simple page 3:ONITR Beograd, September 25, 2016

Out of scope for this talk

f Internationalization in general
That's a \ast (Eeld and could only bey@ed in an gerview talk.
This talk explores speci(Ec technical de@ilemited scope.

f Not about general locale support S only about LC_CTYPE.

f Not about character encoding gersions.
To corvert (Eles from one encoding to another,
simply install the GNU iconpackage.

Lower Kananaskis Lak(1680m)

f Not about typesetting.
That cannot be done with C library utilities, amgreUnicode is utterly inadequate to to
express ay non-trivial arrangement of glyphs, for example for non-trivial mathematical
formulae or anything similarTypesetting requires specialized software [ileX or groff, and
in such contexts, character set handling is one of the points to be considered, bukly relati
minor one, and in ancase, for such software, it is completely irvalg whether or not the base
system offers ankind of multibyte character support or not.

It is not my intention to dismiss ymeal-world tasks as irrelant, in particular not the handling ofgacy non-UTF-8 multibyte
encodings, which is a legitimate concern; i am merely studying what can reasonably be done with C library support in the bas
system without compromizing other goalsldecurity, reliability, and usability and what may better be left to specialized add-

on software.

14:0515 Can all be done®

Ingo Schwarze: Keep multibyte character support simple page 4.0NTR Beograd,September 25, 2016

The myth of feasibility

f | suspect that manpeople think that as long as you implement carefully and use all standard
facilities and interfaces as designed, complete multibyte character support can be done.

f At least i thought so before i set out on the quest i'm talking about.

f But it turned out that is not true. If you build support for arbitrary character set locales into the
base system, there arevaml aspects with respect to which making things secure, reliable, and
usable becomes outright impossible.

f As a (Erst step, i will slhkaome of these unsolvable issues.

A thunderstorm approaching CalgaBenter Street Bridge

14:0600 Table of contents®

Ingo Schwarze: Keep multibyte character support simple page 5:ONVR Beograd, September 25, 2016

Table of contents

f Examples of problems
unsolvable with arbitrary encodings

f Bene(Ets of supporting UTF-8 only
f Implementation techniques
f isu8cont() for simplicity
f mblen(3) for validation
f mbtowc(3) for property inspection
f utf8.c for modularization
f fgetwc(3) for unusually comptecases
f Techniques toaid, if possible
f Examples of bugs in libraries and tools
f Conclusions and outlook

14:0730 Examples of problem®

Ingo Schwarze: Keep multibyte character support simple page 6: UXSENE PROBLEMS | Beograd, September 25, 2016

An extreme example of breakage in the standard: write(1)
POSIX requires:

™The following environment variable shall affect ®eewgion of write: LC_CTYPE: Determinge
the locale for the interpretation of sequences of bytes of text data as charactexar(fples
single-byte as opposed to multi-byte characters in arguments and input (Eles). If the sgcipient
locale does not use an LC_CTYPE eqlant to the sender's, the results are undeEned.S

>

When the locales agree, POSIX requires:

™yping characters from LC CTYPE classiCEcations ‘print' or ‘space' shall cause| those
characters to be sent to the recipietiminal.s

Now as a natter of fct, for the sending program, there is no way
(End out the recipiestiocale. Byits basic design, the locale is p: | Ok
of the enironment of each program, and it is essential for sys
security that without el@ted priileges, no program can inspect t&
environment of other userfrograms.

So to satisfy the requirement for the case of matching locales
standard déctively requires the write(1) program to unconditiona
write all printable characters using the sersleCalg no matter what™ o\t warspite (2850m)

the recipient locale may be. across the Kananaskis Lakes

14:0930 What can we do®

Ingo Schwarze: Keep multibyte character support simple page 7: USRIE PROBLEMS Il Beograd, September 25, 2016

write(1) implementation cannot be (Exed

Locales mismatc® print garbage

f Even if the senders are well-intentioned and only send byte sequencesrtsider as printable
characters in their own locale,

f the recipiens locale might interpret some of them as terminal control sequences
f may screv up the recipiens terminal state
f may display wrong and misleading information

f may e&/en put the terminal into a state where it interpretes user input in a way different from
what the recipient wants and reasonably expects.

Impossible to reduce functionality to neak safe |

For each and eery byte sequence, there can be a locale.
which it might represent a potentially dangerous confis
sequence, sno byte or byte sequence at all is dafg@rint
to a terminal if you do not kmothe encoding.

Mist Mountain (3138m) frbm Linehém Cféek

14:1030 Any way out?®

Ingo Schwarze: Keep multibyte character support simple page 8: UWSRIE PROBLEMS llI Beograd, September 25, 2016

write(1) standard cannot be (Exed

Standard effectely requires utterly unsafe behaviour P o

On a system providing arbitrary locales, there is ray Wwav the
standard could be impved, short of completely deleting the entir
write(1) program.

Who uses write(1) anyway?

f People mueed on to WhatsApp, didrt they?

f But wait: wall(1) has the same problem.

f And shutdown(8uses wall(1)!

f Worst time to scrne& up peoples terminals:

f Right before shutdown when ghburry to sae their work...

That teaches us thaten if mary users use traditional\\alevel tools .
much less nwadays, thg may still be more relant in subtle vays

than one might naely think.
Highway 22 near Bragg Creek,
Elbow River Valley

14:1120 Are important tools affected®

Ingo Schwarze: Keep multibyte character support simple page 9: UXSENE PROBLEMS IV Beograd, September 25, 2016

Tough problems in basic tools: ssh(1)

An ssh(1) connection wolves two locales

1. Thelocale set in the original shell on the client machine (client local &=
Determines what can safely be displayed amd ihmust be encoded. s
It is already de(Ened before the ssh(1) client prograranstarted.

2. Thelocale set in the remote shell on the server machine (server locEgsss
Only this can ineuence what may get printed on the client
to the terminal in which ssh(1) is run.

Goat Range (2700-2800m)
from Goat Pond

How is the server locale selected?

Lots of competing mechanisms for setting environment variables:
f Operating system defaults when starting peocesses
f Variables set or unset by sshd(8) on the server when forking the login shell
f SSH initialization Eles, for example ~/.ssh/environment
f System wide and user speciCEc shell initialization (Eles, and so on

f..
None of that host of possibilities depends on the locale used on the client side,\@anaaspect

the locale on the client side.

14:1240 Any way out?®

Ingo Schwarze: Keep multibyte character support simple page 10: W¥RDE PROBLEMS V Beograd, September 25, 2016

ssh(1) cannot be (Exed either

f So we end up with a problem similar to the write(1) case:

f If the client side is using an arbitrary locale, the server cannot safely segdranin any
encoding, noten plain US-ASCII.

f OpenSSH provides no way for the client to communicate the required locale to the server.
f And even if it could, there is no guarantee that that particular localsigble on the server.

f And even if there were a locale of the same name on the sénmeee is no guarantee that it is
compatible with the client locale, because neither locale names nor the semantitbofbm
except C and POSIX is standardized by POSIX.

Generic problem for arkind of inter-process communication

DANGER

‘Dam Ahead
Keep Out &

At the Goat Pond dam (1670m), Spray Lakes area

14:1330 Any way out?®

Ingo Schwarze: Keep multibyte character support simple page 11: WWRDE PROBLEMS VI Beograd, September 25, 2016

Patial mitigations for the ssh(1) problem

f If you happen to kne the default locale of the remote accol
you want to connect to and the same locale happens |
available on your client system, you can start a terminal using
locale on the client system before typing the ssh(1) commr
and you are safe. But that pecial case.

f Besides, let me ask a question to the audieMdap has done
that at least once in the pastbnsidering what the server loce
was going to be, and start a matching terminal before typingi
ssh command?

f Note that opening the connection (Erst, then setting LC_CTY 38
the remote shell to whater you need locally is not safe - t
remote system may already print to your local terminal
you ever get to the shell prompt:

f A banner gen before authentication,

Chapma Bridge ca. OOm)
f the motd(5), Elbow River Campground
f and then the shell prompt itself...

f All that might already scwe up your terminal, and in the ovst
case cause your terminal to misinterpret the input you type.

14:1500 What can we do®

Ingo Schwarze: Keep multibyte character support simple page 12: THE OPENB®D W Beograd, September 25, 2016

The OpenBSD way

We made a drastic decision!

The OpenBSD base system supports
exactly two LC_CTYPE locales:

1. UTF-8
2. C=POSIX = US-ASCII

We don't even support ISO-LATIN-1
arny longer in the base system.

Isn't that seriously incorenient?

o) Old Goat Mountain (3109m), Spray Lakes Reservoir
f Usability is not as bad as it may seem at (Erst.

f If you get text in different encodings, it is very easy to instalVemon tools from ports
and simply cowvert the data once before using it.

f Besides, Unicode and UTF-8 support all languages.
f So een without relying on ports, the base system is still able to support all languages.

14:1600 How does that help write(1)®

Ingo Schwarze: Keep multibyte character support simple page 13: THE OPENBS®D W Beograd, September 25, 2016

1.

Bene(Ets for write(1)

ASClII printable charactersvaflys safe to print on OpenBSD
(UTF-8 ASCII-compatible: both encode ASCII the same way)
That allows partial write(1) functionality:

Allow passing ASCII only no matter what thea\ocales are.

It allows CEltering out ASCII control bytes (CO characters). _ _ |
Important because the escape character is dangerous. Looking across WhitemasiFond

- - to the Goat Range (ca. 2700m
Possible because no UTF-8 sequence contains such a byte. ge ()

If the sendes terminal is set to UTF-8 and non-ASCII characters are actually typed, they
can safely be (Eltered out (just in case theveeierminal is set to US-ASCII, which we
cannot knw). That's possible because UTF-8 is stateless, that is, codepoints can safely be
deleted from the stream and it still remains a valid stream of characters (which would not b
true for arbitrary locales).

If invalid bytes not forming UTF-8 occur in the input streamytten safely be (Eltered out,
allowing to recoer from encoding errors. Thatpossible because after an encoding error,
UTF-8 allows to (End the beginning of the next character by simply looking for the next byte
not having the most signiCEcant bit set or having theyst signiEcant bits set.
Consequentlythe sending terminal canves become unusable, which might well happen
when allowing arbitrary encodings.

14:1730

Are there ayp downsides?®

Ingo Schwarze: Keep multibyte character support simple page 14: THE OPENB®DIW Beograd,September 25, 2016

Prices to pay in write(1)

OpenBSD write(1) ne violates POSIX

Yet it does implement the maximal safe and useful and reasonable part of POSIX:
All printable ASCII characters, space characters, and the BEL are sent as typed.

f Locales are ignored.
f UTF-8 continuation bytes are silently ignored.
f ASCII control characters and UTF-8 start bytes are replaced with question marks.

f Consequentlif the sender uses UTF-8 or control characters, the recipient sees
that something got lost and can ask the sender about the missing parts.

The implementation is extremely simple and robust

It doesnt even need <wchar.h> or <locale.h>, neither setlocale(3) nor getwchar(3) nor mbtowc(3)
nor anything lile that. Itgets avay with elementary single-byte character handling functions like
fgets(3), isprint(3), and putchar(3), which makes code wes®l maintenance a lot easier.

Spray Mountains (2700-2900m)
seen from the Kananaskis Lakes

14:1850 What about ssh(1)®

page 15: THE OPENBSDW Beograd, September 25, 2016

Ingo Schwarze: Keep multibyte character support simple

Best practice for ssh(1)

f It is obvious that, if the server runs OpenBSD, which only supports the C/POSIX and UTF-8
locales, connecting to it becomes safe if you follbe simple rule to alays use a UTF-8

enabled terminal to run ssh(l).
f Of course, that does not yet secure connections FROM OpenBSD systems: Connecting from

OpenBSD to other operating systems is still dangerous becaysuitii send text in arbitrary

locales.

f So, the best practice i recommend is to:
1. Onall your servers that you mayee want to SSH into, no matter on which operating

system, mad& aure thedefault system locale and all login locasée set to either

C/POSIX or to UTF-8.
2. Onlyeve run ssh(1) fronJTF-8 enabled terminals.

While much of the stfidiscussed here is subtle,

this is one simple pair of rules
| recommend that you remember.

Elpoca Mountain (3029m)
from the Smith-Dorrien Trall

What about xterm(1)®

14:2050

Ingo Schwarze: Keep multibyte character support simple page 16: THE OPENBSD W Beograd, September 25, 2016

Bene(Ets for xterm(1)

Upstream xterm(1) runs in ASCII mode by default

f Traditionally, that default was also used on OpenBSD.

f Bad idea: Some common UTF-8 characters are interpreted as
control codes.For example, a stray German 13 will lock up your
ASCII xterm(1).

Kananaskis Trail at Pocaterra Creek

OpenBSD 6.0 runs xterm(1) in UTF-8 mode by default

If you use a C/POSIX localeyen if you dont intend to ger use UTF-8,
that's OK because a UTF-8 terminal handles ASCII output just (Ene.

In addition to that, the UTF-8 enabled terminal is obviously more resilient to UTF-8 accidentally
sneaking in, in particulabut not only for the case of running ssh(1) as explainedrabd.ctually,

even when fed garbage or unsupported encodings, a UTF-8 xterm(1) is more robust than an ASCI
xterm(1) because the UTF-8 xterm(1) honours *fewer* terminal escape codes than the ASCII
xterm(1). That may seem surprising at (Erst because Unicode de(Enes *more* control characters
ASCII does. But as explained on http://invisible-island.net/xterm/ctlseqgs/ctiseqs.html xterm(1)
never treats decoded multibyte characters as terminal control codes, so the 1ISO 6429 C1 control
codes do not takdfect in UTF-8 mode; but tlyedo take dfect in ASCIlI mode, wen though they

fall outside the scope of ASCII.

14:2220 Any downsides?®

Ingo Schwarze: Keep multibyte character support simple page 17: THE OPENBSD W Beograd, September 25, 2016

Caveats for xterm(1)

Do not use this non-standard default setting gnotimer system except OpenBSD.

f It only works because OpenBSD deliberately does not
support ay locales except UTF-8 and C/POSIX/ASCII.

f Terrible things will happen if you force the default to
UTF-8 in this vay on a system where people can opt
into arbitrary locales that differ from UTF-8.

f On other operating systemgcept OpenBSD, there is
no way in hell to mak the interaction of locales with
terminal controls truly safe.

Farholme Range from WhitemanFond

The main goal of having UTF-8 xterms by default on OpenBSD is improving robustness.
But it also imprees usability. If you usually run your shells inside xterm(1) in C/POSIX mode,
there should be fevisible changes for you.
But if you ever stumble upon a directory containing UTF-8 (Elenames, you can simply say

$ LC CTYPE=en US.UTF-8 Is

which would hae gven you garbage output in the past, and which just works in OpenBSD 6.0.

14:2340 Another example®

Ingo Schwarze: Keep multibyte character support simple page 18: THE OPENBSD WV Beograd,September 25, 2016

Bene(Ets for pod2man(1) manuals

f Many perl manuals contain UTF-8.
f So do seeral ports manuals using perlpod(1) format.

f A few ports manuals contain ISO-LATIN-1: latex2man(1), a2ping(1), ...
OpenBSD man(1), which is the mandoc implementation, silentiyectsrihat to UTF-8.

f So we enabled UTF-8 by default for pod2man(1) in OpenBSD,
improving output for both UTF-8 and C/POSIX/ASCII users.

f Problem unsolvable on gisystem trying to support arbitrary locales,
because man(1l) must not print UTF-8 for users using a different locale.

Yellow Bellied Marmot near Lower Kananaskis Lake

14:2510 What about implementations®

Ingo Schwarze: Keep multibyte character support simple

page 19: IMPLENHNN TECHNIQUES I

Overvievn of Implementation techniques

for small base system utilities

command deci parse ins sani eval
iddo cvitgw spw inau cwsp

rev lc-- C----- === o -

ksh C----- === - -
tty(4) ---- C----- === ---- -C--
write ---- C--=== === -?2p? ----
ypldap ---- C---== === -cc? c---
cut -fd I-ld -v---- --- ---- --s-

cut -cn |-Ic --j--- --- ---- C---

uniq -s I-Ic --i--- --- ---- C---

uniq -f I-tf ---t-- S-- ==-- ----

wc-m le-C ---t-- S-- ---- c---

colrm |-t- ---t-- -pW ---- -W--
fold Ictb C--t-- -pW ---- -W--
column |-t- ---tG- spw ---- -wS-
fmt |-t- ---t-- spw ?ppp -w--
Is I-t- ---t-w -pw ??pp -w--
rs le-- ---t-w -pw ??cc -w--
ps I-t- ---t-w -pw vrpp -w--
ssh I-t- ---t-w -pw vvcce -w--
ul l-g- ----g- -pw SSpp Cw-p
man -1 p----w --w ??pp -w-p

utility functions

Is int mbsprint(const char *mbs, int print)

rs int mbsavis(char** outp, const char *mbs)

ps int mbswprint(const char*, maxw, trail)

ssh int vasnmprintf(c **, size_t, int*, fmt, va)

man int preconv_encode(...)

decision making:
i -1 nitialization
| - s etlocale(3)called
. - s etlocale(3) called butessentially unused
d - d ecision
¢ - MB_CUR_MAXinspectedinisu8cont()
e - MB_CUR_MAXinspected before calling multibyte functions
I mplicitinmblen(3)
t mplicitin mbtowc(3)
g - i mplicitinfgetwc(3)
0 - o ptionsdecidingwhether multibyte functions are used atall
d - o ptiontospecify delimiter (may be UTF-8)
b - o ptiontocountbytes (alternative isto countcharacters)
c - 0 ptiontocountcharacters (alternative isto countbytes)
f - o ptiontocountfields
| - o ptiontocallsetlocale(LC_CTYPE,™)
parsing:
¢ - directinspectionwithisu8cont()
p - d edicated UTF-8parser
v - v alidate multibyte characterwith mblen(3)
i - i terate multibyte characterswith mblen(3)
t iterate multibyte characters with mbtowc(3)
g - g etwide characterswithfgetwc(3)
G - getcommand line argumentwith mbstowcs(3)
w - wrappertoisolate UTF-8 handling fromthe main code
inspection:
s - ¢ heckforwhitespacewithiswspace(3)/iswblank(3)
p - ¢ heckprintability with wcwidth(3)
w - getdisplay width with wewidth(3)
sanitation:
classes:
i -1 nvalidbyte
n - n on-printable character
a - p rintable ASCllIcharacter
u - p rintable Unicode character
actions:
s - s kip
? - r eplacewithquestion mark
v - e ncode withvis(3)
r - r eplacewith Unicode replacementcharacter
c - ¢ opycharacter
p - p rintcharacter
evaluation:
¢ - ¢ ountcharacters
w - ¢ ountdisplay width for columnation and/or tabulation
s - s plitstrings with strstr(3)
S - s plitstrings withwcschr(3)
p - p rintwith putwchar(3)

14:2840

Why this table?®

Beograd, September 25, 2016

Ingo Schwarze: Keep multibyte character support simple page 20: IMPLENHNN TECHNIQUES II Beograd, September 25, 2016

Why am | howing this table?

f Each line provides information about one program; some prograras/ag different modes, so someuvsatwo lines.
f Each column represents one particular implementation technique.

f My expectation, when showing this table, is not that anybody might understand the whole table during this talk. That is impossible, it encodes ¢
huge amount of information in an extremely terse format. But thereamlseasons whi do show the table anyway.

f First reason: It shows that the number of utilities weeha deal with is surprisingly smallYou might expect that almostverything might need
multibyte character handling. But this table only lists about three handfuls of utilities. Admittedigin't CEx & utilities yet, but most are
done by nuwv.

f Second reason: The table shows that the number of implementation techniques is surprigaghplamight expect that there might basically
be just one technique: Read a stream, assemble wide characters, process the characters, and write out the result. But it turns out that would b
bad approach almosteywhere, and different utilities kia vey different needs.

f Third reason: The table shows that sq e dd not not (End a single pair of utilities that could be handled in exactly the sanidéonNene in
the table agrees with yalther line. Well, with one eception: cutc and uniq -s can be implemented using exactly identical techniques - but the
main technique used in that case appears literally nowhere else, and both utilities need quite different techniques when called with other option
So, basicallyeverything is different and nothing can be done schematically.

f Fourth reason, and i'll come back to that after explaining some of the techniques: Those techniques that people would peciyaklgtéc to
be ubiquitous barely appear at a@lor example, fgetwc(3) and fputwc(3) appear in one out of 16 cases, and fgetws(3), fputws(3), *wprintf(3),
wscanf(3), mbrtowc(3), wertomb(3), and wmem(3) dooccur at all.

f At this point, some of you will probably wonder whether i screwed up the title of my talky a¢hhav you ought to keep multibyte character
support simple” - but mthe guy is saying there is a large number of different techniquewvenythéeng differs from gerything else? That
doesnt sound simple at all!

f The point is: While the number of techniques is indeed not all that sn&d), ngle technique is very elementasy he code of eery
individual utility does remain very short and simple. Much simphefiact, than it would become if you tried to apply one and the same general-
purpose coding schemeeeywhere.

14:2845 The simplest approact®

Ingo Schwarze: Keep multibyte character support simple page 21: IMPLENHNN TECHNIQUES IIi Beograd, September 25, 2016

Technique 1: pure isu8cont()

rev(l) - reverse characters in each line

requirements: naeed for character properties, only need tonkndnere chars start
hence, no need for character decoding
not even any need for character validation

solution: isu8cont(pne-liner by Ted Unangst <tedu@openbsd.org>:
Does this byte continue a character?

int isu8cont(unsigned char c)
{ r eturn MB_CUR_MAX > 1 && (c & (0x80 | 0x40)) == 0x80; }

setlocale(3) to set up MB_ CUR_MAX

algorithm: readines into a char[] buffeiskip newlines
loop over characters by loopingver bytes and skipping on isu8cont()
then just cop the multibyte sequences withoweedecoding them

This technique is very robust andvaefails.

Of course,

it only works for UTF-8 only systems;

no similar technique is possible Smith-Dorrien Trail (1650m)

for arbitrary encodings_ with East End of Rundle (2550m)

14:3005 What's the alternatie? ®

Ingo Schwarze: Keep multibyte character support simple page 22: IMPLENHNN TECHNIQUES IV Beograd, September 25, 2016

Technique 1: pure isu8cont()

The alternatie: rev(1) on FreeBSD and NetBSD

f setlocale(3) used in the same way
loop over lines with fgetwIn(3)
store wide character strings
then print wide characters inveEse order

f very fragile,dies on the (Erst encoding error

f even worse: all known implementations of fgetwIn(3)
were buggy and return success on encoding errors,
effectvely corverting all encoding errors into ndine
character® silently gavewrong results

Dust on the Smith-Dorrien Trall
with Mount Sparrowhawk (3121m)

Summary rgarding isu8cont()

f pure isu8cont() is the right me when you needo validation and no character properties
f another example of pure isu8cont() is write(1) mentionegleabo

14:3115 Another application®

Ingo Schwarze: Keep multibyte character support simple page 23: IMPLENHNN TECHNIQUES V Beograd, September 25, 2016

Technique 1: pure isu8cont(1) for ksh(1)

It can also be used as a quick and dirty stopgap for camplgrams
for example OpenBSD ksh(1) emacs input mode

f Make aure that moving left and right
can only mee by whole characters,
not into the middle of a character.

f Make aire that deleting characters
can only delete characters whole,
not individual bytes out of characters.

f Improve dl functions irvolving words
by allowing non-ASCII characters
to be part of words.

f Allow insertion of non-ASCII characters
without screwing up the display,
by backing up to the start byte
after inserting a continuation byte,

.) Elbow Falls
and starting to re-print there.

14:3215 On a yet lower leel? ®

Ingo Schwarze: Keep multibyte character support simple page 24: IMPLENHNN TECHNIQUES VI Beograd, September 25, 2016

Technique 1: pure isu8cont(1) in the kernel

A quick and dirty stopgap for the tty der

f For OXTABS and sysctl(3) KERN_TTY_INFO,
sys/kern/tty.c wants to calculate display widths.

f We don't want wcwidth(1) tables in the kernel,
so double- and zero-width characters will remain wrong.

f But let's at kast handle the common case
of single-width multibyte characters correctly:

int
ttyoutput(int ¢, struct tty *tp)

int col = O;

[* lots of code deleted */
switch (CCLASS(c)) {
case ORDINARY:
if (lisu8cont(c))
++col;

break;
} Calgary Bow Tower

14:3315 Another technique®

Ingo Schwarze: Keep multibyte character support simple page 25: IMPLENHNN TECHNIQUES VI Beograd, September 25, 2016

Technique 2: pure mblen(3)

cut -d S select delimited Eelds out of lines

requirements: naeed for character properties,
but need validation

solution:
case 'd"
dlen = mblen(optarg, MB_CUR_MAX);
if (dlen == -1)
usage();

memcpy(dchar, optarg, dlen);
dchar[dlen] = "\0";

Tsuu T'ina land near Calgary

Alternatives

FreeBSD: usembrtowc(3), which is also possible
NetBSD: nomultibyte support

14:3445 A less simple exampl®

Ingo Schwarze: Keep multibyte character support simple page 26: IMPLENHNN TECHNIQUES VI Beograd, September 25, 2016

Technique 3: iteration with pure mblen(3)

cut(1) -c S select by character count

Again no need for character properties, but need validation:

while(*cp = "\0") {
len = mblen(cp, MB_CUR_MAX);
if (len == -1)
/* Handle encoding error, at least set len. */;
[* Do something with the character. */
cp += len;

}
Decision in OpenBSD: treat eaclvahd byte as one character and keep going.

Alternatve

FreeBSD and NetBSD:

Use getwc(3)
and error out of the Ele
on the Erst encoding error.

Lineham Ridge (2700m) from the Highwood Valig880m)

14:3615 Alternatves? ®

Ingo Schwarze: Keep multibyte character support simple page 27: IMPLENHNN TECHNIQUES IX Beograd, September 25, 2016

cut(l) in FreeBSD

f FreeBSD: uses fgetIn(3) and mbrlen(3)/mbrtowc(3).

f That is slightly inconsistent. Even though POSIX 2016-TG& rexgjuires that L'\n' be
encoded as 0x000a in wchar _t, that dagsmply that an arbitrary locale must encode it as the
single byte Ox0a in a multibyte char * string, or ag single byte at all.

f In ary case, an encoding error causes the rest of the (Ele to be lost.
f mbstate is nger reset, encoding errors in earlier (Eles may compromise decoding of later (Eles.

Looks like a @ack of well-fed dragons...

f This teaches that &'very easy to write code that looks perfectly
general on (Erst sighytlturns out to actually be full of subtle
Issues on closer inspection.

f As OpenBSD prefers correctness, securéyd usability eer
featurism, we belee that it's advantageous to sacriEce full
generality up front and allowing a simplenore powerful, and
less fragile implementation for UTF-8 and ASCII only.

Johnson Trail (Hwy532)

14:3835 What about character propertie®?

Ingo Schwarze: Keep multibyte character support simple page 28: IMPLENHNN TECHNIQUES X Beograd, September 25, 2016

Technique 4: iteration with mbtowc(3)
This one is most often needed In practice.

char *mbs; [* Multibyte string (input). */

int len; /* Encoded length in bytes. */

wchar_t wc; [* Wide character (decoded). */

int width; [* Display width in terminal columns. */

for (mbs = INPUT; *mbs !="\0"; mbs +=len) {
HANDLE_SPECIFIC _BYTES(*mbs); /* Optional. */
len = mbtowc(&wc, mbs, MB_CUR_MAX);

if (len ==-1) { _ _
[* Encoding error, reset state: */ Many summits: Spray Mountains
mbtowc(NULL, NULL, MB_CUR_MAX); from the Smith-Dorrien Trall
[* After handling an invalid byte, retry with the next one. */
len =1;
HANDLE_INVALID_BYTE(*mbs); /* Optional. */
wc = L'?" [* e.g. fmt, Is, rs, uniq */
wc=L"" [* e.g. wc */
width = 1; [* e.g. column, colrm, fmt, Is, rs */
width = -1, [* e.g. ssh */
} else{
width = wcwidth(wc);
if (width ==-1) {
HANDLE_NONPRINTABLE_CHARACTER(wc); /* Optional. */
width =1; /* Usually. */
}

}
HANDLE_CHARACTER(wc, width),

14:4035 Modularize? ®

Ingo Schwarze: Keep multibyte character support simple page 29: IMPLENHNN TECHNIQUES XI Beograd, September 25, 2016

Technique 5: utf8.c utility Eles

f Advantage: isolate all multibyte = UTF-8 handling in one Ele
f Avoid encumbering the main code

f Not always possible, sometimes natea desirable, in particular if the main code do¢sio
much except character handling in the Erst plaeanli&t(1) or fmt(1)

f Typical tasksparsing, validation, sanitation, output
f Typically uses technique 4, iteration with mbtowc(3)
f Sanition concerns walid byte sequences and non-printable characters

f Sanitation options are passthrough, skip, replace with question marks or UTF-8 replacement
characters, or vis(3)

f Examples: Is(1), ps(1), rs(1), OpenSSH

f All have sabtly different requirements, in
particular rgading sanitation, width
measurement, width limitation, and output
disposition

f Hence, it was not yet possible to design a set
of standard functions,ub we still hope more

experience might alle to do so in he future. Looking from the Three Sisters Dam (1710m)

to the northern Goat Range (2730m)

14:4205 POSIX standard functions®

Ingo Schwarze: Keep multibyte character support simple page 30: IMPLENHNN TECHNIQUES XII Beograd, September 25, 2016

Technique 6: iteration with fgetwc(3)

f Only program so far too compléor these techniques: ul(1)

f I implemented and tested a version using techniques 4 and 5,
iteration with mbtowc(3) and wcwidth(3) in utf8.c,
but it wasnt simple at all, so it was wer committed.

f The reason whit wasnt simple: Itdoes all kinds
of string manipulation, almost kkan @litor:
splitting, joining; deleting, inserting, transforming characters

f What i did commit was a version doing the full
char * to wchar_t * to char * double caarsion.

f In part inspired by the FreeBSD version which is in turn
based on Bruno HaibkeWork in util-linux,

but not sharing ap UTF-8 code with either version. Storm Mountain (3095m)
from Highwood Pass (2206m)

Examples of problems with the FreeBSD version of ul(1)

f Errors out on the Erst encoding error S tée' relped when surporting arbitrary encodings.
f Backspace backs up one column position, but should backup one character.

f Always treats \b as underlinedyeeas lold.

f Fals to move the rest of the buffer right when _ later getsrtaid with a double-width char.

14:4335 What is not recommended®

Ingo Schwarze: Keep multibyte character support simple page 31: IMPLENHNN TECHNIQUES Xl Beograd, September 25, 2016

Techniques towoid

f *r*() functions like rrbRtowc(B)
Don't use them unless you really need multithreading.
They are considerably harder to use correctly than mbtowc(3).

f fgetws(3) or fgetwin(3)
Don't use them unless you must support arbitrary locales.
getline(3) allows much better error handling andtikarder to use.
(And even for arbitrary locales, read(2) + mbtowc(3) is an option.)

f *towcs() functions lilke mbstowcs(3)
Iterating with mbtowc(3) allows much better error handling
and needs only marginally more code (typically a dozen lines of code).

Some people recommend
to always use the most complicated functions
because thework in all circumstances.

| don't.

Where simpler functions sufCEce ytlage easier to use and
cause lessugs. Andthe simpler functions themsels may

be less buggyoo.
Biking the Crowchild Trail, Calgary

14:4535 What about library quality’®

Ingo Schwarze: Keep multibyte character support simple page 32: BUGS' PARADISE |

Beograd, September 25, 2016

Library quality

f In general, the BSD C libraries are of good quality:
solid code that has been scoured for bugs for decades.

f Multibyte and wide character code is no longer exactly young,
but younger than much other code, and much more buggy.

f In the following, i'm showing various examples from OpenBSD.

Other BSD implementations sometimes differ in detalil,
but my impression is that quality is similar in all three systems.

f All bugs found by chance, no complete audit yet!

Going from the Kananaskis Lakesvird Highwoood Pass

14:4625 What about the most basic function®?

Ingo Schwarze: Keep multibyte character support simple page 33: BUGS' PARADISE I Beograd, September 25, 2016

Examples of bugs in cearsion functions

f mbtowc(3) neglected to set errno(2) to EILSEQ
when gven an ncomplete character ((Exed Feb 2016)

f mbrtowc(3) accepted somevatid UTF-8 sequences
and silently produced walid code points abe U+10FFFF (Exed Sep 2015)

f wcrtomb(3) accepted code points abddH+10FFFF
and silently produced walid multibyte sequences (Exed Sep 2015)

f wecrtomb(3) accepted UTF-16 surrogates in UTF-8 mode
and silently produced walid multibyte sequences (Exed Oct 2015)

Little Elbow River (ca. 1600m) washed out by the 2013 «00d, with Mount Glas@®935m)

14:4725 What about standard 1/0O®

Ingo Schwarze: Keep multibyte character support simple page 34: BUGS' PARADISE llI Beograd, September 25, 2016

Bugs In libraries: examples in standard 1/O

f fgetwc(3) didnt set the error indicator for encoding errors (Exed Dec 2015)

f fputwc(3) didnt set the error indicator for i@id characters (Exed Jan 2016)
The Austin Group thinks thaten the C standard itself is buggy here.

f fgetws(3) discarded srcharacters read and reported bogus EOF when errno happened to be
EILSEQ upon entry and the (Ele ended without a terminating L'\n' character ((Exed Jan 2016)

f fgetwIn(3) ignored most encoding errors and
sometimes returned partial lines truncated at random places (Exed Aug 2016)

f printf(3) %ls destroyed all (Ele *ags on encoding errors,
making the (Ele permanently unreadable and unwriteable (Exed Jan 2016)

f printf(3) silently treated encoding errors in the format string
as the end of the format string ((Exed Jan 2016)

f printf(3) accessed a NULL pointer when out of memory or on encoding errors ((Exed Jan 201¢

The scree of the Rock Glacier (ca. 2100m), Pocaterrayyalle
and the Elpoca Mountain (3029m)

14:4825 More examples®

Ingo Schwarze: Keep multibyte character support simple page 35: BUGS' PARADISE IV Beograd, September 25, 2016

Various other errors in the C library

f The character property tables contained no data whatsoe
for characters in the range U+FF00 to U+10FFgEExed Oct 2015)

f Due to a bug in mklocale(1), character type and width data was wrong
for mary exotic characters designating numbers. (Exed May 2016)

f The C library code parsing character property tables contained
out of boundary memory access for corrupt input (Eles. (Exed Oct 2015)

Repair of the Highwood Rér (1870m) after the 2013 «0od belathe Elk Range (2750m)

14:4910 Another library?®

Ingo Schwarze: Keep multibyte character support simple page 36: BUGS' PARADISE V Beograd, September 25, 2016

Examples of bugs in libedit

f el _wgetc(3), el _wgets(3) etc. sometimes discarded valid bytes after readirybgtes

f el _getc(3) silently corerted non-ASCIl Unicode characters into bogus bytes

f el _getc(3) didrt'set errno(2) for out-of-range errors

f el _getc(3) didrt'set the return argument to the NUL byte on read errors

f Several functions reading characters broken on systems where wchar_ttdisesdCS-4.
All these bugs were found during a partial audit and (Exed in March 2016.

Crumbling rock on the south face of Storm Mountain (3095m)
14:5000 Examples in stand-alone program®?

Ingo Schwarze: Keep multibyte character support simple page 37: BUGS' PARADISE VI Beograd, September 25, 2016

Examples of bugs in various programs

f mandoc(1) violated ISO C99 by mixing putchar(3) and putwchar(3) on the same stream,
resulting in corrupt output on glibc ((Exed July and September 2016)

f mandoc(l) accepted UTF-16 surrogates in \[uXXXX] escapes
and silently produced walid UTF-8 output (Exed Oct 2015)

f mandoc(1) failed to apply bold and italic markup to non-ASCII characters ((Exed Oct 2015)

f tmux(1) contained wrong display widths for various characters
in its internal width tables (Exed\\z2015)

f ypldap(8) contained buggy hand-rolled UTF-8 validation code that failed to actually validate
but instead caused buffev@runs and loss of input data fovatid input (Exed Apr 2016)

Even the tig Smuts Creek (ca. 1900m)
was washed out and needed repair.

Background: Spray Mountains (up to 3400m)

14:5100 Something really important®

Ingo Schwarze: Keep multibyte character support simple page 38: BUGS' PARADISE VII Beograd, September 25, 2016

The situation in OpenSSH

f Input and output streams are treated as natmooughout.

f In most places, incoming text data is treated as opaque byte strings,
simply passing it through, noven trying to validate or decode.

f Where text data is interpreted, the code does not restrict itself to UTF-8,
but attempts to support arbitrary encodings, though ne&y in full generality.

f Informational and diagnostic messages are written in ASCII throughout,
which is compatible with manbut not with all encodings.

f In scp(1) and sftp(lyntrusted text data sent from the serkar example (Ele and directory
names - could silently sageup terminal settings on the client host in addition to wrong data
being displayedPat of that was (Exed in May 2016 using validation and sanitation techniques.
Some (Exes could not yet be committed because part of the output is produced in signal
handlers.

f For exotic encodings, seral unknown bugs likely exist.

f For maximum securitymake sur
both endpoints run OpenBSD
(to avoid exposure to arbitrary locales)
and set LC_CTYPE to UTF-8 on both sides.

f sftp(1) libedit usage needs remi&vith
respect to multibyte character handling.

f Overall,auditing has barely begun

14:5300 Conclusions®

Ingo Schwarze: Keep multibyte character support simple page 39: CONCLUSION | Beograd, September 25, 2016

Conclusions

f Multibyte character handling code in full generality is huge, complicated, bomgy error out
on the slightest problem, and using arbitrary encodings/s fidly secure.

f Consequentlyproviding full multibyte support in a general-purpose POSIX C library is bad for
usability, correctness, and security.

f Instead, better l&a full generality where it belongs: In dedicatedw®sion and text
processing software.

f Supporting UTF-8 only alles good usability
simplicity, and hence a better chance for
correctness, reliabilityand security.

f No silver bullet found yet to sodv dl
implementation tasks in one uniCEedy,viout
evay practical task encoutered so far aléml
a smple solution.

f A full toolbox may require up to ten thfent
simple implementation techniques, each one
adapted to a speci(Ec set of requirements.

f Look at the source code of the OpenBSD
utilities mentioned here for guidancevwnado East End of Rundle (2550m) seen from Canmore
solve gmilar tasks.

14:5430 Future directions®

Ingo Schwarze: Keep multibyte character support simple page 40: CONCLUSION I Beograd, September 25, 2016

Work to do in OpenBSD

f Small utilities almost done, but afgemain: lam(1), pr(1), talk(1), tr(1), ...
f Continue audit: libc, libedit

f POSIX regular expression librafinmatch(3), glob(3)

f Work was barely started: ksh(1), OpenSSH

f Work was not yet started: vi(1), mg(1)

f Unknown status, maybe not much to do: libcurses, less(1), ...

Outlook from The Hump (2020m)
along Johnson Trail (HW¥32)

across the foothills wards the prairies

14:5530 Who contributed?®

Ingo Schwarze: Keep multibyte character support simple page 41: CONCLUSION 1lI Beograd, September 25, 2016

Thanks!

f The OpenBSD foundation pruled (Enancial support for part of
my time. No way to mak 5 much progress without that S
without the contributions by lots and lots of othewdiepers,
nothing would hae been achieed at dl:

f Marc Espie initial import of partial multibyte handling code Bridge to Princes Island, Calgary

f Stefan Sperlingimport of partial Citrus code; contributed to maxf the ideas explained here;
joint work, patch reviews, bug reports, marseful discussions

f Ted Unangstdevdoped maw of the ideas explained here; nygratch reviews

f Anthony Bentley. contributed to may of the ideas explained here; joint work, bug(Exes, patch
reviews, bug reports, mamiseful discussions

f Andrew Fresh: gen_ctype_utf8.pl author and maintainer;
bug reports and feedback on some patches

f Martijn van Duren: (Ex rev(1), wall(1), write(1); maode reviews for libedit; some initial
ideas and lots of feedback for scp(1) and sftp(1)

f Sébastien Marie: joint work, some bugExes, patch reviews, useful discussions

f Vadim Zhulov: review and meticulously re(Ene the TODO list;
feedback concerning some of the ideas explained here; some patch reviews

f Todd Miller: large numbers of patch reviews in libc and utilities

14:5650 Who contributed?®

Ingo Schwarze: Keep multibyte character support simple page 42: CONCLUSION IV Beograd, September 25, 2016

Thanks! (2)

f Theo de Raadt: support for the OpenSSH, stdio, and citrus patches; support for
the general direction with small utilities; amf@atches and patch reviews

f Dmitrij Czarkoff: mary code reviews for libedit and patch reviews for utilities

f Damien Miller: patch to allw UTF-8 in ssh(1) banners
and much support working on OpenSSH code in general

f Nicholas Marriott: UTF-8 work in tmux(1);
feedback concerning some of the ideas explained here

f Christian Weisgerber: feedback concerning some of the ideas explained here;
Important suggestion and patch revir xterm(1)

f Peter Hessler: important contributions to some of the ideas explained here

Additional patches, patch reviews, help and feedback from:

Darren Tcket Eric Faurot, Giannis Tsaraias, Jason Mcintyre, Jérémie Courreges-
Anglas, Jonathan GraMartin Natano, Martin Pieuchot, Masabi¥ASUOKA,
Masao UEB\YASHI, Matthieu Herrb, Philip GuentheB&uart Henderson, Theo
BUhler, Tobias Stéckmann (OpenBSD), Andr€hernos (FreeBSD), Christos
Zoulas (NetBSD), SvyatostaMishyn (Void Linux), Christian Headndorf,
Frederic Navak, Matthav Matrtin, ...

14:5700 The end.®

